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Optimal paths in disordered media: Scaling of the crossover
from self-similar to self-affine behavior
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We study optimal paths in disordered energy landscapes using energy distributions of the typeP(log10 E)
5const that lead to the strong disorder limit. If we truncate the distribution, so thatP(log10 E)5const only for
Emin<E<Emax, and P(log10 E)50 otherwise, we obtain a crossover from self-similar~strong disorder! to
self-affine~moderate disorder! behavior at a path lengthl 3 . We find thatl 3}@ log10(Emax/Emin)#

k, where the
exponentk has the valuek51.6060.03 both ind52 andd53. We show how the crossover can be under-
stood from the distribution of local energies on the optimal paths.@S1063-651X~99!51409-8#

PACS number~s!: 05.40.2a, 02.50.2r, 64.60.Ak
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The problem of finding and characterizing the optim
path in a disordered energy landscape has attracted m
interest in recent years@1–9#. In many applications the en
ergy landscape is rugged and optimization is crucial to fi
the global minimum path or configuration, which is domina
ing the low temperature behavior. Prominent examples
optimization problems include spin glasses@10#, folding of
proteins@11#, and the well-known traveling salesman pro
lem @12#.

For an energy landscape on a directed lattice, the p
are self-affine and belong to the universality class of direc
polymers~DP! ~see, e.g.,@5#!. This universality class is char
acterized by fluctuations of the width of the pathw(t) as a
function of path lengtht, which scales asw(t);ta. Here,a
is the DP roughness exponent, being 2/3 in 111 dimensions
and 0.6260.01 in 211 dimensions@5#.

Recently, Cieplaket al. @6# considered optimal paths i
isotropic systems in the strong disorder limit~sometimes also
called the ultrametric limit!. In this limit, the energies asso
ciated with the bonds of a given lattice are assumed to
drawn from a very broad distribution, such that the path
tween two points is dominated by the maximum barr
along it. In this case, the total energy of the path~which is
the sum of all energies along the path! can be well approxi-
mated by this maximum barrier. Cieplaket al. @6# introduced
a novel algorithm@13# and found that an optimal path in suc
an energy landscape is a fractal. The lengthl of the path
scales with the end-to-end distancer as l ;r dopt with dopt
51.2260.01 in d52, dopt51.4260.02 in d53, and dopt
51.5960.02 ind54. For a moderate energy disorder, su
as a uniform or Gaussian distribution, the isotropic case
studied recently by Schwartzet al. @9# applying Dijkstra’s
algorithm @14#. They find, for bothd52 andd53, that the
path remains self-affine and within the universality class
DP.

The crossover from self-similar to self-affine behav
was first established in@15# for an Ising system ind52 with
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random exchange strengths and antiperiodic boundary
ditions. It was observed that, depending on the competi
between the system size and broadness of the distributio
exchange strengths, a crossover from self-similar to s
affine behavior of the interface line between the two doma
~i.e., of the optimal path! occurs. However, the scaling be
havior of the crossover was not studied quantitatively, an
is not clearhow the optimal path is changed when movin
from one disorder limit to the other one. Here we stu
quantitatively the dependence of the nature of the disorde
the length of the optimal path considered. We show t
some energy distributions can be regarded as ‘‘strong’’
short length scales and ‘‘moderate’’ on large length sca
such that fractal behavior occurs below a characteri
length scalel 3 and self-affine behavior above it.

To better understand the relation between optimal p
and strength of underlying disorder, we study the optim
path for energy distributionsP(log10E)5const forEmin<E
<Emax and P(log10E)50 otherwise@16#. By changing the
ratio Emax/Emin we can tune the degree of disorder. We fi
~in agreement with@15#! that the optimal path is self-simila
at short length scales and self-affine at large len
scales. The crossover lengthl 3 scales as l 3

;@ log10(Emax/Emin)#
k where, suprisingly the exponentk

51.6060.03 does not seem to depend on the dimensiona
of the system.

For detecting the optimal path we use Dijkstra’s algorith
@14#, which is valid as long as the energiesEi associated with
the bonds are non-negative. We use square and simple c
~sc! bond lattices with sizeL52001 ind52 andL5229 in
d53, respectively. For the distribution of bond energi
P(log10E)5const we find that the radius of gyration of th
optimal path squaredr 2(l ) scales asr 2(l );l 2/dopt as a
function of the path lengthl . The numerical results for
r 2(l ) vs l for bothd52 andd53 are shown in Fig. 1. The
obtained fractal dimensionsdopt51.2260.02 in d52 and
dopt51.4360.03 in d53 are in very good agreement wit
the values obtained earlier@6,17#.

If we truncate the distribution at certain lower and upp
boundsEmin and Emax, so thatP(log10E)5const only for
Emin<E<Emax and P(log10E)50 otherwise, we find a

,
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crossover from self-similar~characteristic of strong disorde!
to self-affine~characteristic of moderate disorder! behavior
at a path lengthl 3 ~see Fig. 2!. For l ,l 3 the path shows
self-similar behavior as before, i.e., the radius of gyrat
squared behaves asr 2(l );l 2/dopt with the known fractal
dimensiondopt, and the fluctuation of the width square
shows the behaviorw2(t);t2, as expected for self-simila
structures. At the lengthl 3 the highest energy loses th
ability to dominate the optimal path and the behav
changes drastically; forl .l 3 the path is no longer self

FIG. 1. Plot of the radius of gyration squaredr 2(l ) vs path
length l , for d52 ~open squares! and d53 ~open circles, multi-
plied by 102). In both cases, a distribution of bond energi
P(log10 E)5const is used. The lines shown have a slope 2/dopt

52/1.22 (d52) and 2/dopt52/1.43 (d53). The inset shows the
local slopes vs 1/l . The averages are performed on ensembles
104 paths.

FIG. 2. ~a! Scaling plot of the radius of gyration square
r 2(l )/l

3

2/dopt vs l /l 3 with l 35@ log10(Emax/Emin)#
k, for d52

~open squares! and d53 ~open circles, multiplied by 102). The
lines shown have slopes 2/dopt52/1.22 and 2 (d52), and 2/dopt

52/1.43 and 2 (d53). ~b! Scaling plot of the fluctuation of width
squaredw2(t)/t3

2 vs t/t3 with t35@ log10(Emax/Emin)#
k/dopt, for d

52 ~open squares! andd53 ~open circles, multiplied by 103). The
transient regimes witht<6 (d52) and t<9 (d53) are removed
for clarity. The lines shown have a slope 2 and 2a54/3 (d52),
and 2 and 2a51.24 (d53). In all four cases,k51.6 and
log10(Emax/Emin)53.75, 7.5, 11, 16, 23, 32, 45, 60, and 100 a
used. The averages are performed over 104 paths.
n

r

similar but shows self-affine behavior, i.e., the radius of g
ration squared crosses over to the trivial behaviorr 2(l )
;l 2, and the fluctuation of the width squared behaves n
asw2(t);t2a, wherea is the same as the exponent for d
rected polymers. For the crossover lengthl 3 we obtain a
scaling l 3}@ log10(Emax/Emin)#

k, where the exponentk has
the valuek51.6060.03 both ind52 and d53 and may
therefore be independent of dimension.

Sincel 3 is the only relevant length scale, we expect th
r 2(l )5l

3

2/doptf (l /l 3) and w2(t)5t3
2 g(t/t3) with t3

;l
3

1/dopt and two scaling functionsf (x) and g(x). In Fig.
2~a! we show a data collapse forr 2(l ) when plotting
r 2(l )/l

3

2/dopt vs l /l 3 for log10(Emax/Emin), ranging from
3.75 to 100, supporting the scaling ind52 andd53. For the
second quantity of interestw2(t), a similar data collapse ca
be obtained by plottingw2(t)/t3

2 vs t/t3 , as done in Fig.
2~b!. For both r 2(l ) and w2(t) we obtain very good data
collapse. For the system sizeL3 , at which the crossove
occurs, follows L3;l

3

1/dopt}@ log10(Emax/Emin)#
k/dopt, with

k/dopt>1.31 ind52 andk/dopt>1.12 ind53.
To achieve a better understanding of the crossover,

study the energy distribution on the generated optimal pa
Since we expect the maximum energyÊmax on a path of
length l to be the key quantity determing the crossover,
focus here on the distribution of these maximum energ
P̂l (log10 Êmax) on paths of lengthl . As an example, we
present numerical results ford52 in Fig. 3, where we show
P̂l (log10 Êmax) for three different energy truncations«
[ log10(Emax/Emin)511, 23, and 45~in these casesl 3'46,
150, and 440) and four different path lengthsl 59, 49, 199,
and 999. The results can be summarized as follows: the
tributions are bell shaped, as the path lengthl increases they
get narrower, and the positions of their maxima shift towa
higher energies. Close tol 3 the distributions become ver

f
FIG. 3. Plot of the distribution of the maximum energ

P̂l (log10 Êmax) vs Êmax/Emin in d52 for different truncations«
[ log10(Emax/Emin)511, 23, and 45~from left to right! and different
path lengthsl 59 ~full circles!, 49 ~full triangles!, 199 ~full dia-
monds!, and 999~full stars! ~from bottom to top!. The vertical lines
indicate the respective critical energy log10(Ec /Emin)
5pc log10(Emax/Emin) @18#. The averages are performed on e
sembles of 104 paths.
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narrow peaks at the respective critical ener
log10(Ec /Emin)5pc log10(Emax/Emin) @18#, where pc is the
critical concentration of the respective lattice@pc51/2 for
the bond square lattice ind52 and pc>0.248814 for the
bond sc lattice ind53 ~see, e.g.,@19#!#. For l .l 3 , the
distributions remain as narrow peaks at the respective cri
energyEc .

For a more quantitative measure of the observations
scribed above, one possible quantity to study is the cum
tive probability that accumulatesaround the respective criti-
cal energy. One expects this measure to be small fol
!l 3 , reflecting the fact that there are only very few hig
energy bonds on the path, such that a single one is ab
dominate the path’s behavior and the system is in the str
disorder limit. The measure is expected to increase withl
until reaching the value 1 forl @l 3 , resembling the loss o
ability of a single bond to control the path, yielding the lim
of moderate disorder. Formally, we define

P«~ l ![E
log10[Ec(«)] 2 ê

`

P̂l ~ log10 Êmax!d~ log10 Êmax!, ~1!

with an arbitrary smallê.0 as the cumulative probability
around the respective critical energyEc(«) for a given «
[ log10(Emax/Emin). As an example, we show in Fig. 4~a! a
scaling plotP«(l ) vs l /l 3 for ten values of« ranging
from «511 to 54 ind52. It can be seen that the data co
lapses quite nicely on a single curve, so thatP«(l ) is only a
function of the combined variablel /l 3 . In addition, it can
be seen thatP«(l )}l /l 3 for l /l 3,1 and that the cross
over occurs roughly whereP«(l 3)5P3 with P3>0.2.
@The valueP3>0.2 of course depends on the choice ofê ~in
our caseê50.05), but the qualitative behavior ofP«(l 3) is
independent ofê.# The structure belongs to the universali
class of the optimal path in strong disorder as long as
probability P«(l ) @which is the probability of having a
maximum energy approximately equal to the critical ene
Ec(«) on a path of this length# is smaller thanP3 . The
crossover occurs at a path lengthl 3 , where this cumulative
probability becomes equal toP3 . For l .l 3 the maximum
energy occurs too frequently and hence there is no long
single energy that is able to dominate the path’s behavior
a result, we recover the universality class of the direc
polymer problem.
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From the quantityP«(l ) one is also able to deduce th
scaling of the crossover lengthl 3 . SinceP«(l )}l /l 3 for
l ,l 3 , it follows thatP«(l )5P0l «2k in this regime, so
that P«(l )/l is a constant for fixed« and scales as
P«(l )/l }«2k, which can be seen in Fig. 4~b!. This means
that the crossover and its scaling behavior can be descr
by the distribution of maximum energiesP̂l (log10 Êmax) on
the path and its related quantityP«(l ). The fact that dimen-
sionality is explicitly neither involed inP̂l (log10 Êmax) nor in
P«(l ) further supports the possibility thatk51.6060.03 is
independent of dimension.

This work has been supported by the Deutsc
Forschungsgemeinschaft, the Minerva Center for the Phy
of Mesoscopics, Fractals and Neural Networks, and
German-Israeli Foundation.

FIG. 4. ~a! Scaling plot of the cumulative probabilityP«(l ) vs
l /l 3 with l 35@ log10(Emax/Emin)#

k in d52 for different trunca-
tions «[ log10(Emax/Emin)511 ~full circles!, 13 ~open squares!, 16
~full triangles!, 19 ~open diamonds!, 23 ~full stars!, 27 ~open
circles!, 32 ~full squares!, 38 ~open triangles!, 45 ~full diamonds!,
and 54~open stars!, andk51.6. The line shown has a slope 1.~b!
Scaling plot ofP«(l )/l vs « for l 59 ~full circles!, 19 ~open
squares!, 49 ~full triangles!, 199 ~open diamonds!, and 999~full
stars!. The line shown has a slope21.6>2k. For the numerical

integration a value ofê50.05 is used and the averages are p
formed on ensembles of 104 paths.
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