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We study optimal paths in disordered energy landscapes using energy distributions of tR¢lomeE)
=const that lead to the strong disorder limit. If we truncate the distribution, sd{thed),, E) = const only for
Emin<E<Ej ., and P(log;oE)=0 otherwise, we obtain a crossover from self-similairong disorderto
self-affine(moderate disordgbehavior at a path length,, . We find that”, =[ 109 o Enax/Emin) 1%, Where the
exponentx has the valuec=1.60+0.03 both ind=2 andd=3. We show how the crossover can be under-
stood from the distribution of local energies on the optimal pdt8063-651X99)51409-9

PACS numbegs): 05.40—a, 02.50-r, 64.60.Ak

The problem of finding and characterizing the optimalrandom exchange strengths and antiperiodic boundary con-
path in a disordered energy landscape has attracted muditions. It was observed that, depending on the competition
interest in recent yeafd—9]. In many applications the en- between the system size and broadness of the distribution of
ergy landscape is rugged and optimization is crucial to findexchange strengths, a crossover from self-similar to self-
the global minimum path or configuration, which is dominat- affine behavior of the interface line between the two domains
ing the low temperature behavior. Prominent examples ofi.e., of the optimal pathoccurs. However, the scaling be-
optimization problems include spin glasdé9)], folding of  havior of the crossover was not studied quantitatively, and it
proteins[11], and the well-known traveling salesman prob- is not clearhow the optimal path is changed when moving
lem[12]. from one disorder limit to the other one. Here we study

For an energy landscape on a directed lattice, the pathguantitatively the dependence of the nature of the disorder on
are self-affine and belong to the universality class of directedhe length of the optimal path considered. We show that
polymers(DP) (see, e.g.[5]). This universality class is char- some energy distributions can be regarded as “strong” on
acterized by fluctuations of the width of the patfit) as a  short length scales and “moderate” on large length scales,
function of path length, which scales aw/(t)~t“. Here,a  such that fractal behavior occurs below a characteristic
is the DP roughness exponent, being 2/3 inlldimensions length scale”’ and self-affine behavior above it.
and 0.62-0.01 in 2+ 1 dimensiong5]. To better understand the relation between optimal path

Recently, Cieplaket al. [6] considered optimal paths in and strength of underlying disorder, we study the optimal
isotropic systems in the strong disorder lifsbmetimes also path for energy distribution®(log,oE) =const forE,<E
called the ultrametric lim)t In this limit, the energies asso- <Eqo and P(log;oE)=0 otherwise[16]. By changing the
ciated with the bonds of a given lattice are assumed to beatio E . /Epni, We can tune the degree of disorder. We find
drawn from a very broad distribution, such that the path be{in agreement wittj15]) that the optimal path is self-similar
tween two points is dominated by the maximum barrierat short length scales and self-affine at large length
along it. In this case, the total energy of the péathich is  scales. The crossover length/’y scales as /'y

the sum of all energies along the patan be well approxi- ~[l0g;1o( Emax/Emin)]© Where, suprisingly the exponent
mated by this maximum barrier. Cieplekal.[6] introduced =1.60*+0.03 does not seem to depend on the dimensionality
a novel algorithnrd13] and found that an optimal path in such of the system.

an energy landscape is a fractal. The lengtlof the path For detecting the optimal path we use Dijkstra’s algorithm

scales with the end-to-end distances / ~r %t with dopt  [14], which is valid as long as the energigsassociated with
=1.22+0.01 ind=2, do,=1.42£0.02 ind=3, andd,y, the bonds are non-negative. We use square and simple cubic
=1.59+0.02 ind=4. For a moderate energy disorder, such(sc bond lattices with sizé& =2001 ind=2 andL =229 in
as a uniform or Gaussian distribution, the isotropic case wad=3, respectively. For the distribution of bond energies
studied recently by Schwartet al. [9] applying Dijkstra’s  P(log;oE) =const we find that the radius of gyration of the
algorithm[14]. They find, for bothd=2 andd=3, that the optimal path squared?(/) scales ag?(/)~ /"t as a
path remains self-affine and within the universality class offunction of the path length”. The numerical results for
DP. r2(/) vs/ for bothd=2 andd=3 are shown in Fig. 1. The
The crossover from self-similar to self-affine behavior obtained fractal dimensiond,,=1.22+0.02 ind=2 and
was first established ifl5] for an Ising system il =2 with dop=1.43+0.03 ind=3 are in very good agreement with
the values obtained earlig6,17].
If we truncate the distribution at certain lower and upper
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FIG. 1. Plot of the radius of gyration square®/) vs path 03 . == :
length /, for d=2 (open squargsandd=3 (open circles, multi- ) _'.‘: L~
plied by 16). In both cases, a distribution of bond energies 0 5"-1[')' 10?' 55 ?5"'
P(logyoE)=const is used. The lines shown have a slopt,/
=2/1.22 d=2) and 24,,~=2/1.43 @=3). The inset shows the 10210 Bumax/ Emin
local slopes vs Y. The averages are performed on ensembles of
10* paths. FIG. 3. Plot of the distribution of the maximum energy

P,(10G10Emay) VS Emax/Emin in d=2 for different truncationse
crossover from self-similafcharacteristic of strong disorder  =|og, (E ya/Emin) =11, 23, and 45%from left to right and different
to self-affine(characteristic of moderate disor@ldrehavior  path lengths”=9 (full circles), 49 (full triangles, 199 (full dia-
at a path length’’, (see Fig. 2 For/ </, the path shows mond3, and 999full stars (from bottom to top. The vertical lines
self-similar behavior as before, i.e., the radius of gyrationindicate the respective critical energy lgdE./Enmin)
squared behaves ag(/)~/?fopt with the known fractal ~ =pcl00io(Emax/Emin) [18]. The averages are performed on en-
dimensiond,,;, and the fluctuation of the width squared sembles of 1Hpaths.
shows the behaviow?(t)~t?, as expected for self-similar _ o _
structures. At the length’y, the highest energy loses the sumlar but shows self-affine behavior, i.e., the radllus of gy-
ability to dominate the optimal path and the behavior'alion squared crosses over to the trivial behavit)
changes drastically; for'>/, the path is no longer self- ~/2, and the fluctuation of the width squared behaves now
asw?(t)~t2¢, wherea is the same as the exponent for di-
rected polymers. For the crossover length we obtain a
scaling/ s <[ 10g1o( Emax/Emin) 1, Where the exponent has
the valuex=1.60+0.03 both ind=2 andd=3 and may
therefore be independent of dimension.
Since/ . is the only relevant length scale, we expect that
r2(/)=/2%rf(/1/,) and wi(t)=t2g(t/t,) with t,
- ~/1X/d°m and two scaling function$(x) and g(x). In Fig.
10° 10 10 10 10 2(a) we show a data collapse far’(/) when plotting
£/ex rz(/)//i/dopt vs /17y for 100;o( Emax/Emin), fanging from
3.75 to 100, supporting the scalingds2 andd= 3. For the
second quantity of interest?(t), a similar data collapse can
be obtained by plottingyvz(t)/tzX vs t/ty, as done in Fig.
2(b). For bothr?(/) andw?(t) we obtain very good data
collapse. For the system size,, at which the crossover
occurs, follows Ly~/ i/dm"oc[loglo(EmaX/Emin)]"’dopt, with
kldop=1.31 iInd=2 and«/dy,=1.12 ind=3.
162 16" 18 10 1f To achieve a better understanding of the crossover, we
study the energy distribution on the generated optimal paths.

_ _ _ Since we expect the maximum enerfy,., on a path of
FlG-Z%- (@) Scaling plot of the radius of gyration squared |ength/ to be the key quantity determing the crossover, we
PN vs /17 with /' =[10g1o( Emax/Emin) ], for d=2  focus here on the distribution of these maximum energies

(open squargsand d=3 (open circles, multiplied by ). The ﬁ,/aoglo“EmaX) on paths of length. As an example, we

lines shown have slopesdgf=2/1.22 and 2 =2), and 2y resent numerical results fde=2 in Fig. 3, where we show
—2/1.43 and 2 §=3). (b) Scaling plot of the fluctuation of width - ! : g- 2 ,
P, (logioEman for three different energy truncations

squaredw?(1)/t2 vs t/t,, with t. =[100;o( E ax/Ei) %0 for d _
=q2 (open éq)uaxre)sanddX=3 (opeXn c[ircl%gs n;nljxltiplTéné]by 7. The  =1001(Emax/Emin)=11, 23, and 43in these cases . ~ 486,
transient regimes with<6 (d=2) andt<9 (d=3) are removed 150, and 440) and four different path lengthis-9, 49, 199,

for clarity. The lines shown have a slope 2 and=24/3 (d=2), and 999. The results can be summarized as follows: the dis-
and 2 and 2=1.24(d=3). In all four cases,x=1.6 and tributions are bell shaped, as the path lengtincreases they
1091o( Emax/Emin) =3.75, 7.5, 11, 16, 23, 32, 45, 60, and 100 are get narrower, and the positions of their maxima shift towards
used. The averages are performed ovér daths. higher energies. Close 6, the distributions become very

r’(t)

2/ dopt
£y
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narrow peaks at the respective critical energy Sl@ 7 ace

10910( E¢/Emin) = Pc [0910( Emax/Emin) [18], Where p. is the
critical concentration of the respective lattitp.=1/2 for y
the bond square lattice id=2 and p,=0.248814 for the T(¢) 10
bond sc lattice ind=3 (see, e.9.[19])]. For />/, the
distributions remain as narrow peaks at the respective critical 16°
energyE..

For a more quantitative measure of the observations de- 16' 1§ 1d
scribed above, one possible quantity to study is the cumula-
tive probability that accumulateroundthe respective criti-
cal energy. One expects this measure to be small/for
</, reflecting the fact that there are only very few high
energy bonds on the path, such that a single one is able to
dominate the path’s behavior and the system is in the strong
disorder limit. The measure is expected to increase with
until reaching the value 1 fof’> /", , resembling the loss of
ability of a single bond to control the path, yielding the limit

/8y

IL(0)
]

of moderate disorder. Formally, we define ) 5030 40 50 60
€
M.()= - P (logE..)d(logE Q FIG. 4. (a) Scaling plot of the cumulative probabiliiyf (/) vs
%) log; g Ec(e)] — /(10610 Ema)d(10G10Ema) (1) 217« With /5 =[1001o(Emax/Emin)]< in d=2 for different trunca-

tions e =100;o( Emax/Emin) =11 (full circles), 13 (open squares 16

(full triangles, 19 (open diamonds 23 (full starg, 27 (open
with an arbitrary smalle>0 as the cumulative probability circles, 32 (full square$, 38 (open triangle 45 (full diamonds,
around the respective critical enerd(z) for a givene  and 54(open stars and«=1.6. The line shown has a slope (b)
=100;o(Emax/Emin)- As an example, we show in Fig(a} a Scaling plot ofHE(/)// vs ¢ for /=9 '(fuII circles), 19 (open
scaling plotI1 (/) vs 71/ for ten values ofe ranging squarep 49.(fuII triangles, 199 (open diamonds and 999(qu|
froms=11to 54 ind=2. It can be seen that the data col- starg. The line shownA has a slopel.6=— k. For the numerical
lapses quite nicely on a single curve, so tHa{/) is only a integration a value ok=0.05 is used and the averages are per-
function of the combined variablé//, . In addition, it can formed on ensembles of 1paths.
be seen thall,(/)/1/ for 71/, <1 and that the cross-  From the quantityll, (/) one is also able to deduce the
over occurs roughly wherél, (/) =II, with T1,=0.2.  scaling of the crossover length, . Sincell,(/)=/1/ for
[The valuell, =0.2 of course depends on the choiceegin  /'</ ', it follows thatIl (/) =11o/¢ ™ “ in this regime, so

our cases=0.05), but the qualitative behavior BF,(/) is  that I1.(~)// is a constant for fixede and scales as

. 2 . I ()] /<& *, which can be seen in Fig(#d). This means
independent Ofs'.] The structure belongs to the universality that the crossover and its scaling behavior can be described
class of the optimal path in strong disorder as long as th

" : o i - By the distribution of maximum energids (10910 Emay) ON
probability I1,(/) [which is the probability of having a 2Y . 1ergies,(10g;o may)
maximum energy approximately equal to the critical energ)}he pa_th _and 'ts_ rglateq quahtﬂs(/)_.AThe factAthat dlm_en-
E.(e) on a path of this lengthis smaller thanlT, . The S|onaI|ty is explicitly neither mvolgd ."P/(I()gloEmax) norin
crossover occurs at a path length , where this cumulative (/) further supports the possibility that=1.60+0.03 is
probability becomes equal 1d . For/> /", the maximum independent of dimension.
energy occurs too frequently and hence there is no longer a This work has been supported by the Deutsche
single energy that is able to dominate the path’s behavior. AForschungsgemeinschaft, the Minerva Center for the Physics
a result, we recover the universality class of the directedf Mesoscopics, Fractals and Neural Networks, and the

polymer problem. German-Israeli Foundation.
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